Reactive Energy Management

LV Components

Catalogue 2010

Reduce energy cost and Improve your business performance

Ensure reliability and safety on installations

Thanks to the know-how developed over the last 50 years, Schneider Electric is placed as the global specialist in Energy management providing a unique and comprehensive portfolio.

Schneider Electric helps you to make the most of your energy with innovative, reliable and safe solutions with:

Quality and reliability

- Continuity of service thanks to the high performance and long life expectancy of capacitors
- 100% tested in manufacturing plant at Bangalore
- Designed and engineered with the highest international standards

Safety

- Tested safety features integrated on each phase.
- Over-pressure detection system for safe disconnection at the end of life
- All the materials and components are non PCB pollutants

Efficiency and productivity

- Product development includes innovation in ergonomics and ease of installation and connection
- Specially designed components to save time on installation and maintenance
- All the components and solutions are available through a network of distributors and partners in more than 100 countries

Your requirements....

Optimize Energy consumption

- By reducing electricity bills
- By reducing power losses
- By reducing CO₂ emissions

Increase the power availability

- Compensate for voltage sags detrimental to process operation
- Avoid nuisance tripping and supply interruptions

Improve your business performance

- Optimize the installation size
- Reduce harmonic distortion to avoid the premature ageing of equipment and destruction of sensitive components

Our solutions....

Reactive energy management

In electrical networks, reactive energy is responsible for increased line currents, for a given active energy transmitted to loads.

The main consequences are

- Necessary over sizing of transmission and distribution networks by the Utilities
- Increased voltage drops and sags along the distribution lines
- Additional power losses

This is resulting in increased electricity bills for industrial customers because of

- Penalties applied by most Utilities to reactive energy,
- Increased overall kVA demand,
- Increased energy consumption within the installations.

Reactive energy management aims to optimize your electrical installation by reducing energy consumption, and improve power availability. CO₂ emissions are also globally reduced.

5 to 10% reduction in Utility power bills

Reduce energy cost by Improving electrical networks

Contents

Principle of Reactive Energy Management Effects of Reactive Energy Power Factor Power Factor correction	1
Benefits of Reactive Energy Management	2
Types of compensation Fixed compensation Variable compensation	5
Modes of compensation Central Group Individual	5
Calculation of Capacitor ratings - kvar For motors For industrial Networks For transformers	6
Influence of harmonics in electrical Network. Definition Effects Solution	8
Capacitor Selection guidelines Capacitor selection Capacitor operating conditions Rated voltage and current	10
Types VarplusCan Standard Duty VarplusCan Heavy Duty VarplusCan Gas Heavy Duty VarplusBox Energy (MD-XL) VarplusBox Standard Duty VarplusBox Heavy Duty VarplusBox Energy (MD-XL) VarplusBox APP Super Heavy Duty	12
Harmonic Capacitors for Detuned Filter Application VarplusCan Harmonic Heavy Duty VarplusCan Harmonic Gas Heavy Duty VarplusCan Harmonic Energy (MD-XL) VarplusBox Harmonic Heavy Duty VarplusBox Harmonic Energy (MD-XL) VarplusBox Harmonic Energy (MD-XL) VarplusBox Harmonic APP Super Heavy Duty	20
Detuned Reactors.	25
Thyristor switch	27
Contactors	28
Power Factor Controller	29
Reference number structure	31
Drawings	31

Principle of reactive energy management

All electrical loads which operate by means of magnetic fields/electromagnatic field effects, such as motors, transformers, fluorescent lighting etc., basically consume two types of power, namely, active power and reactive power.

Active Power (kW)

It is the power used by the loads to meet the functional output requirements.

Reactive Power(kvar)

It is the power used by the load to meet its magnetic field equipments and the requirements of magnetic losses.

The reactive power is always 90° out of phase with respect to the active power.

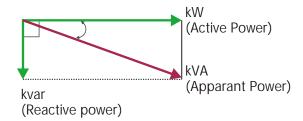
The unit normally used to express the reactive power is VAr (in practical usage kvar)

The apparent power kVA is the vector sum of active and reactive power.

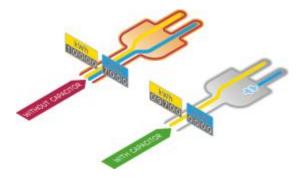
Effects of Reactive Energy

It is now obvious that both active and reactive energy are necessary inputs in all electrical systems. However the flow of reactive power has certain negative aspects which result in increased cost of electrical systems and also drop in the efficiency of system operations.

The increased flow of reactive power results in the following adverse conditions

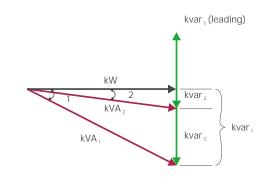

- Overloading of Transformers
- Higher kVA demand on the system
- Higher voltage drop throughout the system
- Increased I²R losses leading to additional heating and loss of energy
- Increase in the rating of switch gear, cables and other protective devices
- Reduction of voltage at the load end

Power Factor


The power factor is the cosine of the angle between Active power and Apparent power.

- Power Factor (cos) = <u>Active power (kW)</u>
 <u>Apparent power(kVA)</u>
- $kVA = \sqrt{kW^2 + kvar^2}$
- kW = kVA x cos

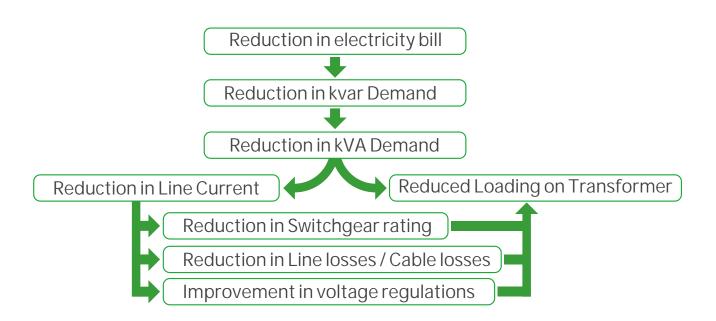
• tan =
$$\frac{kvar}{kW}$$


Power Factor Correction

Capacitors are most cost effective and reliable static devices which can generate and supply reactive power (energy). Capacitors consume virtually negligible active power and able to produce reactive power locally, thus enabling Power Factor Correction for inductive loads.

The vector diagram given aside summarize the concept of power factor correction/improvement by reactive power compensation with capacitors.

- \cos_1 = Initial power factor
- cos_{2} = Target power factor $kVA_{2} < kVA_{1}$



Benefits of reactive energy management

By providing proper Reactive Energy Management system, the adverse effects of flow of reactive energy can be minimized.

Following table provides some of the benefits of Reactive Energy Management.

Savings on the electricity bill

•	Decrease	in	kVA	demand

- Eliminate penalties on reactive energy
- Reduce power loss in transformers

Example: Loss reduction in a 630 kVA transformer PW = 6,500 W(assumed) with an initial Power Factor = 0.7. With power factor correction, we obtain a final Power Factor = 0.98 The losses become: 3,316 W, i.e. a reduction of 49%. Copper loss = $\left(\frac{PF_1}{PF_2}\right)^2 x$ Full load copper loss

 $=\left(\frac{0.7}{0.98}\right)^2 x$ Full load copper loss

$$=\left(\frac{0.7}{0.98}\right)^2 x 6500 W$$

= 3316 W

= 3183W

Increase in available power

A high power factor optimizes an electrical installation.

Fitting PFC equipment on Low Voltage side of transformers increases available power at secondary of LV transformers.

The table shows the increased available power at the transformer output by improving Power Factor from 0.7 to 1.

Example

Calculation for addition		
be connected by impre	ovir	
Load	=	500 kVA
Initial PF(cos 1)	=	0.7
Target PF (cos 2)	=	0.95
COS 1	=	kW ₁ / kVA
kW ₁	=	kVA x cos 1
	=	350 kW
kW ₂	=	kVA x cos 2
	=	475 kW
Additional kW that can		
be connected	=	475 - 350
	=	125 kW
% of additional load	=	125 / 350 x 100

tional load	=	125 / 350 x 1
	=	36%

Power factor	Additional available power(kW)
0.7	0%
0.8	+14%
0.85	+21%
0.90	+29%
0.95	+36%
1.00	+43%

Reduction in line current

Installation of PFC equipment results in,

- Reduction in current drawn from source
- Reduction in conductor cross section and reduced losses

The table shows the Multiplying Factor(MF) for the conductor crosssection increase for fall in power factor.

Example

Calculation of reduction of line current if PF improved from 0.60 to 1.00

- Load = 350 kW1. $kVA_1 = kW/PF_1$
 - = 350 / 1.00
 - = 350 kVA
 - = kVA x 1000 / $\sqrt{3}$ x V 1
 - = 583 x 1000 / $\sqrt{3}$ x 440
 - = 765 A (Before PF compensation)
- 2. $kVA_2 = kW/PF_2$
 - = 350/0.60
 - = 583 kVA
 - 2
- = kVA x 1000 / √3 x V = 350 x 1000 / √3 x 440
 - = 459 A (After PF compensation)

Savings in line current

Multiplying Factor

- $= |_1 / |_2$
- = 765 / 459
- = 1.67

Improvement in voltage regulation

Installing PFC equipment increases the voltage at the point of connection, which compensates the fall in voltage due to poor Power Factor

 $\frac{\triangle V}{V} = \frac{Q}{S}$

△V =Voltage Improvement

- V = System Voltage Without Capacitors
- Q = Capacitors Rating in MVAr
- S = System Fault Level In MVA

Example: For a 150 kvar, 440V capacitor & System fault level of 15 MVA.

 $\frac{\triangle V}{V} = \frac{Q}{S}$ $\triangle V = \frac{440 \times 0.15}{15}$ $\triangle V = 4.4 \text{ Volts}$

Power factor	MF
1	1
0.80	1.25
0.60	1.67
0.40	2.50

Types of compensation

Broadly, there are two types of compensation:

- Fixed compensation
- Variable compensation

Fixed compensation

This arrangement uses one or more capacitors to provide a constant level of compensation.

Control may be

- Manual: by circuit-breaker or load-break switch
- Semi-automatic: by contactor
- Direct connection to an appliance and switched with it

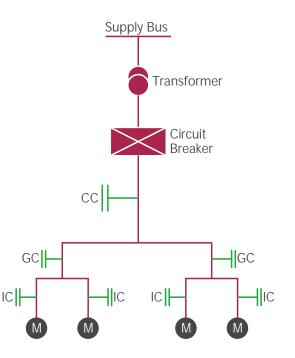
These capacitors are applied:

- At the terminals of inductive loads (mainly motors), at bus bars connecting numerous small motors and inductive appliances for which individual compensation would be too costly
- In cases where the load factor is reasonably constant

Variable compensation

- APFC panels Contactor / Thyristor based

- ePFC Electronic VAr compensator with IGBT


The primary reason for Variable compensation is the variation of loads in the network. In many applications the process are not constant through out the day, hence the reactive energy required varies as per the load profile, to eliminate the risk of leading power factor and to optimize the kVA demand, the variable compensation techniques are used.

Modes of compensation

The selection of the Power Factor Correction equipment can follow

3 - levels of compensation

- Central compensation
- Group compensation
- Individual compensation

CC=Central Compensation GC=Group Compensation IC = Individual Compensation M = Motor Load

Calculation of Capacitor ratings - kvar

For Industrial / Distribution Networks

In electrical installations, the operating load kW and its average power factor (PF) can be ascertained from electricity bill. Alternatively it can be easily evaluated by formula

- Average PF = KWh/kVAh
- Operating load kW
- = kVA demand x Average PF
- The average PF is considered as the initial PF and final PF can be suitably assumed as target PF.

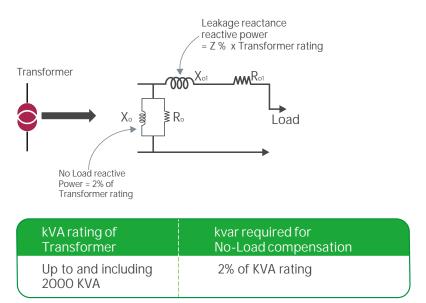
The required Capacitor kvar can be calculated as shown in example. Example: Initial PF 0.85, Target PF 0.98 kvar = kW X Multiplying factor

- from Table
- = 800 x 0.417
- = 334 kvar required.

Multiplication Factor table

INITIAL PF	TARGET PF									
	0.9	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
0.4	1.807	1.836	1.865	1.896	1.928	1.963	2.000	2.041	2.088	2.149
0.42	1.676	1.705	1.735	1.766	1.798	1.832	1.869	1.910	1.958	2.018
0.44	1.557	1.585	1.615	1.646	1.678	1.712	1.749	1.790	1.838	1.898
0.46	1.446	1.475	1.504	1.535	1.567	1.602	1.639	1.680	1.727	1.788
0.48	1.343	1.372	1.402	1.432	1.465	1.499	1.536	1.577	1.625	1.685
0.5	1.248	1.276	1.306	1.337	1.369	1.403	1.440	1.481	1.529	1.590
0.52	1.158	1.187	1.217	1.247	1.280	1.314	1.351	1.392	1.440	1.500
0.54	1.074	1.103	1.133	1.163	1.196	1.230	1.267	1.308	1.356	1.416
0.56	0.995	1.024	1.053	1.084	1.116	1.151	1.188	1.229	1.276	1.337
0.58	0.920	0.949	0.979	1.009	1.042	1.076	1.113	1.154	1.201	1.262
0.6	0.849	0.878	0.907	0.938	0.970	1.005	1.042	1.083	1.130	1.191
0.62	0.781	0.810	0.839	0.870	0.903	0.937	0.974	1.015	1.062	1.123
0.64	0.716	0.745	0.775	0.805	0.838	0.872	0.909	0.950	0.998	1.058
0.66	0.654	0.683	0.712	0.743	0.775	0.810	0.847	0.888	0.935	0.996
0.68	0.594	0.623	0.652	0.683	0.715	0.750	0.787	0.828	0.875	0.936
0.7	0.536	0.565	0.594	0.625	0.657	0.692	0.729	0.770	0.817	0.878
0.72	0.480	0.508	0.538	0.569	0.601	0.635	0.672	0.713	0.761	0.821
0.74	0.425	0.453	0.483	0.514	0.546	0.580	0.617	0.658	0.706	0.766
0.75	0.398	0.426	0.456	0.487	0.519	0.553	0.590	0.631	0.679	0.739
0.76	0.371	0.400	0.429	0.460	0.492	0.526	0.563	0.605	0.652	0.713
0.78	0.318	0.347	0.376	0.407	0.439	0.474	0.511	0.552	0.599	0.660
0.8	0.266	0.294	0.324	0.355	0.387	0.421	0.458	0.499	0.547	0.608
0.82	0.214	0.242	0.272	0.303	0.335	0.369	0.406	0.447	0.495	0.556
0.84	0.162	0.190	0.220	0.251	0.283	0.317	0.354	0.395	0.443	0.503
0.85	0.135	0.164	0.194	0.225	0.257	0.291	0.328	0.369	0.417	0.477
0.86	0.109	0.138	0.167	0.198	0.230	0.265	0.302	0.343	0.390	0.451
0.87	0.082	0.111	0.141	0.172	0.204	0.238	0.275	0.316	0.364	0.424
0.88	0.055	0.084	0.114	0.145	0.177	0.211	0.248	0.289	0.337	0.397
0.89	0.028	0.057	0.086	0.117	0.149	0.184	0.221	0.262	0.309	0.370
0.9	0.000	0.029	0.058	0.089	0.121	0.156	0.193	0.234	0.281	0.342
0.91		0.000	0.030	0.060	0.093	0.127	0.164	0.205	0.253	0.313
0.92			0.000	0.031	0.063	0.097	0.134	0.175	0.223	0.284
0.93				0.000	0.032	0.067	0.104	0.145	0.192	0.253
0.94					0.000	0.034	0.071	0.112	0.160	0.220
0.95						0.000	0.037	0.078	0.126	0.186

Recommended kvar for 3 Phase AC Induction Motors


Motor	Capacitor ra	ting in kVAr v	vhen motor sp	beed (RPM) is	
Rating	3000	1500	1000	750	500
in HP	rpm	rpm	rpm	rpm	rpm
2.5	1	1	1.5	2	2.5
5	2	2	2.5	3.5	4
7.5	2.5	3	3.5	4.5	5.5
10	3	4	4.5	5.5	6.5
15	4	5	6	7.5	9
20	5	6	7	9	12
25	6	7	9	10.5	14.5
30	7	8	10	12	17
40	9	10	13	15	21
50	11	12.5	16	18	25
60	13	14.5	18	20	28
70	15	16.5	20	22	31
80	17	19	22	24	34
90	19	21	24	26	37
100	21	23	26	28	40
110	23	25	28	30	43
120	25	27	30	32	46
130	27	29	32	34	49
140	29	31	34	36	52
145	30	32	35	37	54
150	31	33	36	38	55
155	32	34	37	39	56
160	33	35	38	40	57
165	34	36	39	41	59
170	35	37	40	42	60
175	36	38	41	43	61
180	37	39	42	44	62
185	38	40	43	45	63
190	38	40	43	45	65
200	40	42	45	47	67
250	45	50	55	60	70

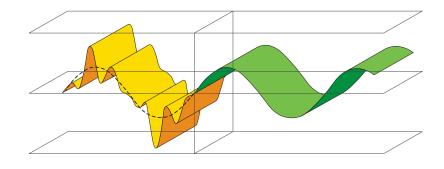
Note: In general the capacitor current should be less than or equal to 90% of no load current of the motor.

kvar for Transformers for no load compensation

The transformer works on the principle of Mutual Induction. The transformers will consume reactive power for magnetizing purpose.

Following equivalent circuit of transformer provides the details of reactive power demand inside the transformer:

Influence of harmonics in electrical network


Definition of Harmonics

Harmonics are sinusoidal current whose frequency is Integral multiple of fundamental frequency.

Harmonic currents are caused due to wave modification techniques used in non-linear loads.

The flow of harmonic currents through system impedances in turn creates voltage harmonics; the presence of voltage harmonics will alter the incoming Sinusoidal voltage waveform.

A few Harmonic load generating devices are VFD's, UPS, DC Drives, Battery Charger, Welding loads, Electric Furnace, etc.

Equipment	Nature of ill effect.
Motor	Over heating, production of non-uniform torque, increased vibration.
Transformer	Over heating and insulation failure, noise.
Switchgear and cables	Neutral link failure, Increased losses due to skin effect and over heating of cables.
Capacitors	Life reduces drastically due to harmonic overloading.
Protective Relays	Mal-operation and nuisance tripping.
Power electronic equipment	Mis-firing of Thyristors and failure of semiconductor devices.
Control and instrumentation	
electronic equipment	Erratic operation followed by nuisance tripping and breakdown.
Communication equipment / PC's	Interference and noise.
Neutral Cable	Higher Neutral current with 150 Hz frequency, Neutral over heating and /or open
	neutral condition.
Telecommunication equipment	Telephonic Interference, Mal-function of the sensitive electronics used, Failure of
	Telecom hardware.

Effects of Harmonics

Effect on Capacitors

Capacitors are in particular highly sensitive to the presence of Harmonics due to the fact that capacitive reactance, namely Xc is inversely proportional to the frequency of the harmonics present. As a result of this, the likely hood of amplification of Harmonic currents is very high when the natural resonance frequency of the capacitor and the network combined happens to be close to any of the harmonic frequencies present.

If the harmonic power is substantial ie.. greater than 10%, this situation could result in severe over voltages and overloads which will lead to premature failure of capacitors and the equipments. (refer calculation of non-linear load)

Solution for Harmonic Rich Environment

Depending on the magnitude of harmonics in the network, different configurations shall be adopted.

Detuned Filters

Detuned filters are the most preferred since they are cost effective solutions which work on the principle of avoiding resonance by achieving an inductive impedance at relevant harmonic frequencies. The tuning frequency is generally lower than 90% of the lowest harmonic frequency whose amplitude is significant and which operate in a stable manner under various network configurations and operating conditions.

Detuned harmonic filter systems consist of Reactor (L) in series with a capacitor (C) as shown in figure.

Such a filter has a unique self series resonance frequency at which reactance of reactor equals reactance of capacitor, ie.. $X_L = X_C$. The resonance frequency Fr is given by the formula

Tuned Filters

If the self resonant frequency of LC filter is within 10% of the harmonic to be filtered, then the filter is called Tuned Filter. They are primarily used as harmonics absorption filters and are generally more bulky and costly. A harmonic study is required to design this filter. A computer simulation is required to verify the filter performance at all loading levels.

Series Broadband Filters

If an installation requires to reduce the harmonic distortion without affecting the existing power factor, then specially designed broadband filters are recommended. The broadband filters will be connected in series with the non-linear load, hence the harmonic current generated by the non linear loads will be arrested at the point of generation.

Active Filters

There are few instances where the passive filters cannot be used. For example, if a wide spectrum of harmonics has to be filtered, the passive based solution may not be effective and impose significant limitations.

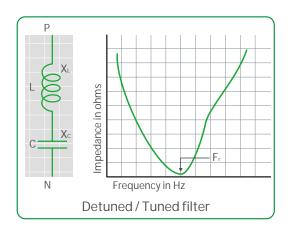
The Active harmonic filter can measure and filter the harmonics generated by non linear loads in real time mode.

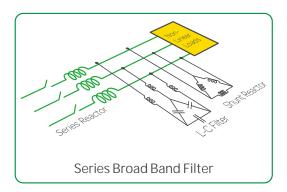
Active filter works on a principle of generating harmonic current out of phase with the harmonic current existing in the network. The Active filter comprises of active elements such as IGBT's, DC Link capacitors, microprocessor based controller with DSP logic etc.

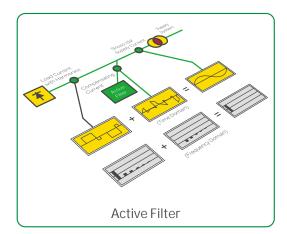
Note: Tuned, Series Broadband and Active filters are custom designed and will be supplied on a case to case basis. You are requested to contact our sales team.

Harmonic Filters

- Detuned Filters
- Tuned Filters
 - Series broad band Filters


Active Filters


Single phase
 Three phase, 3 wire


- Three phase, 4 wire

-Hybrid

Combination of passive and active filters. Active filters for harmonic reduction and Passive filters for PF improvement.

Calculation of Non-Linear Load (%)

Since the harmonics are caused by non-linear loads, an indicator for the magnitude of harmonics is the ratio of the total power of nonlinear loads to the supply transformer rating.

Example:

Installed transformer rating = 650 kVA Power of non-linear loads = 150 kVA = 23% $NNL = (150/650) \times 100$

In extreme cases, where harmonics are already present in the grid (external harmonics), a lower % of non-linear load can also cause significant harmonic problems. Hence solution based on nonlinear load factor has to be used with caution.

% non- linear load ratio

_

Total non-linear loads (kVA) Installed

- X 100

transformer rating (kVA)

Capacitor se	lection Guidelir	nes
Cupacitor SC		105

Capacitors must be selected depending on the working conditions expected during their lifetime.

Solution	Description	Recommended use for	Maximum conditions	Life expectancy (hours)	
S Duty Standard Duty		Non-Linear Loads up to	<u><</u> 10%		
-	capacitor	Over-current	1.5 ls	Up to 100000	
		Ambient temperature	55°C (class D)	- op to 100000	
		Switching frequency/year	5000		
H Duty	Heavy Duty	Non-Linear Loads up to	<u><</u> 20%		
	capacitor	Over-current	1.8 ls	Up to 130000	
		Ambient temperature	55°C (class D)	- 00 10 130000	
		Switching frequency/year	7000		
GH Duty	Gas Heavy Duty	Non-Linear loads up to	<u><</u> 20%		
	capacitor	Over-current	1.8 ls	Up to 130000	
		Ambient temperature	55°C (class D)	- Up to 130000	
		Switching frequency/year	7000		
APP	Super Heavy Duty	Non-Linear Loads up to	<u><</u> 20%	Up to 140000	
SH Duty	capacitor	Over-current	2 ls		
		Ambient temperature	55°C(class D)	i I	
		Switching frequency/year	8000		
Energy	Energy Capacitor for (MD-XL) special conditions	Non-Linear Loads up to	<u><</u> 25%	+ 	
(MD-XL)		Over-current	2.5 ls	– Up to 160000	
		Ambient temperature	70°C		
		Switching frequency/year	10000		
Harmonic	Heavy Duty,	Filter Application +			
Hduty	harmonic	Non-Linear loads up to	< 30%		
	Rated capacitor	Over-current	1.8 ls	Up to 130000	
	+ Detuned reactor	Ambient temperature	55°C (class D)		
		Switching frequency/year	7000		
Harmonic	Super Heavy Duty	Filter Application +		1	
APP	Harmonic rated	Non-Linear loads up to	<u><</u> 30%		
SH Duty	capacitor	Over-current	2.0 ls	Up to 140000	
	+	Ambient temperature	55°C		
	Detuned reactor	Switching frequency/year	7000		
Harmonic	Energy,	Filter Application +			
Energy	Harmonic rated	Non-Linear loads up to	<u><</u> 30%		
(MD-XL)	capacitor	Over-current	2.5 ls	Up to 160000	
(+	Ambient temperature	70°C		
	Detuned reactor	Switching frequency/year	10000	-	

For non-linear loads above 30%, system study is required.

Rated voltage and current

Capacitors must be designed and selected according to the service voltage of the network (U_s) on which they will operate, taking account of voltage fluctuations, including long duration operating at a supply voltage up to (1.1 x U_s).

According to IEC 60681-1 standard, the rated voltage (U_N) of a capacitor is defined as the continuously admissible operating voltage.

The rated current (I_N) of a capacitor is the current flowing through the capacitor when the rated voltage (U_N) is applied at its terminals, supposing a purely sinusoidal voltage and the exact value of reactive power (kvar) generated. Capacitor units shall be suitable for continuous operation at an r.m.s. current of $(1.3 \times I_N)$. The service current (I_S) of a capacitor is defined here as the current flowing through the capacitor when the service voltage (U_S) is applied at its terminals, supposing a purely sinusoidal voltage and the exact value of reactive power (kvar) generated.

In order to operate safely in real conditions, the rated voltage (U_N) of capacitors must be higher than the service voltage (U_S) of the network on which they will operate.

The following table gives the design rated voltage (U_N), as defined per IEC 61831-1, suitable for different network service voltages, for the different construction technologies.

Network service		50 Hz	
voltage (U _s)	230	400	440
Standard Duty	250	440	480
Heavy Duty	260	460	500
Energy		460	500
Harmonic Heavy Duty		500	530
Harmonic Energy		500	580

Life expectancy is given considering standard operating conditions: service voltage (U_s) , service current (I_s) , 25°C ambient temperature.

CAUTION: The life expectancy will be reduced if capacitors are used exceeding the maximum level of conditions indicated in the selection table.

Construction types

VarplusCan type Capacitor

VarplusBox type Capacitor

VarplusCan Capacitor

Box Clamp Terminal Discharge Resistor A comprehensive range that offers 2 different construction technologies to fulfill your needs....

A safe, reliable and high performance solution for power factor correction in commercial, industrial and semi-industrial applications. Suitable for fixed or, automatic PFC, real time compensation, detuned and tuned filters.

VarplusCan capacitors are designed and engineered to deliver a long working life with low losses.

Construction

Internally constructed with three single phase capacitor elements delta connected and assembled in an optimized design. Each capacitor element is manufactured with a unique polypropylene film as the dielectric which enables the feature of "self-healing".

The active capacitor elements are encapsulated in a specially formulated thermoset resin for Heavy duty and semi liquid resin for standard duty. Which ensures better mechanical stability and heat transfer from inside the capacitor.

The unique finger-proof termination assembly which is fully integrated with discharge resistors allows capacitor a proper access for tightening and ensures a cable termination without any loose connections. Once, tightened, their special design guarantees that the tightening torque is always maintained.

Main Characteristics

Easy installation & maintenance

- Heavy edge metallization / wave cut edge to ensure high inrush current capabilities
- Optimized design to have a low weight, compactness
- Reliability to insure an easy installation
- Unique termination system that allows a maintained tightening
- Single point for fixing and earthing

Availability

- Available on request in single phase design for special applications
- Available in small kvar rating within all the network voltages 50Hz/60Hz

Safety

- Twin protection: Self-healing + Pressure Sensitive Disconnector
- Finger proof CLAMPTITE terminals to reduce risk of accidental contact and to ensure firm termination
- Special resistivity and metallization profile for higher thermal efficiency, lower temperature rise and enhanced life expectancy

Typical Applications:

- PFC equipment assembly
- Harmonic Filters

VarplusCan Standard Duty Capacitors (SDuty)

- Non-Linear loads up to 10%
- Over-current 1.5 ls
- Ambient temperature up to 55°C
- Switching frequency up to 5000 /year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 1 to 30 (40 & 50 kvar on request)

VarplusCan Heavy Duty Capacitors (HDuty)

- Non-Linear loads up to 20%
- Over-current -1.8 ls
- Ambient temperature up to 55°C
- Switching frequency up to 7000 /year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 1 to 30 (40 & 50 kvar on request)

Varplus Can Gas Heavy Duty Capacitos (GHDuty)

- Non-Linear loads up to 20%
- Over-current 1.8 İs
- Ambient temperature up to 55°C
- Switching frequency up to 7000 /year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 5 to 30 (40 & 50 kvar on request)

VarplusCan Energy Capacitors (MD-XL)

- Non-linear loads up to 25%
- Over-current 2.5 ls
- Ambient temperature up to 70°C
- Frequent switching operation up to 10000/year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 5 to 15

Technical Details

	VarplusCan Standard Duty	VarplusCan Heavy Duty	VarplusCan Gas Heavy Duty	VarplusCan Energy
	Capacitors (SDuty)	Capacitors (HDuty)	Capacitors (GH Duty)	(MD-XL)
Standards	IS 13340-1993/IS13341-19	92, IEC 60831-1/-2		
Rated Voltage	415 /440V (other voltage	on request)		
Frequency	50 Hz			
Powerrange	1 to 30 kvar (other kvar o	n request)	5 to 30 kvar	5 to 15 kvar
Losses(Dielectrical)	< 0,2 watt/kvar			
Losses (Total)	< 0,5 watt/kvar			< 0,45 watt/kvar
Peak inrush current	Up to 200 x I _N	Up to 250 x I _N	Up to 250 x I _N	Up to 350 x I _N
Over voltage	1.1 U _s continuous	nuous		
Over current	1.5 x l _s	1.8 x I _s	1.8 x I _s	2.5 x I _s
Mean life expectancy	Up to 100,000 Hrs	Up to 130,000 Hrs	Up to 130,000 Hrs	Up to 160,000 Hrs
Capacitance tolerance	-5%, +10%			
Voltage test				
Between terminals	2.15x U _N (AC), 2 sec			
Between earth & terminals	< 660V, 3000V (AC) 10 s	ec & >660V, 6000V (AC)	, 10sec	
Dischargeresistors	Fitted: standard discharg	e time 60 seconds		
Safety		ensitive disconnector + disc	harge device	
Protection	IP30 (IP54 on request)		0	
Casing	Extruded aluminum can			
Dielectric	Metallized Polypropylene film with Zn/Al alloy	Metallized Polypropylene film with Zn/Al alloy, special resistivity & profile, special edge (wave cut)	Metallized Polypropylene film with Zn/Al alloy, special resistivity & profile, special edge (wave cut)	Double metallized paper + Polypropylene film
Impregnation	Non - PCB, Bio degradable resin	Non - PCB, Bio- degradable Dry resin	Inert gas impregnated, Bio-degradable Dry resin	Non-PCB, oil
Environmental conditions				
Ambient temperature	-25°C / + 55°C (Class D)			-25°C / +70°C
Humidity	95%			
Altitude	4000 m above sea level			
Installation features				
Mounting	Indoor, vertical position	Indoor, any position	Indoor, any position	Indoor, vertical position
Connection	Three phase delta conne	uest)		
Fixing and earthing	Threaded M12 stud at bo			
Terminals	CLAMPTITE - Three phas	e terminal with electric sho	ck protection (finger proof) ble fast-on with cable (<u><</u> 4k)	, /Ar)

440V Capacitor ordering reference nos.

Rated KVAr	Rated Current (Amps)	Rated capacitance	Dimen Dia	sion (mm) ¦ Height	¦ Net Weight ¦ (kg)	Ordering reference no	Reference Drawing no.
		lard Duty Capaci				<u> </u>	
	1.3	5.5		90	0.4		Drawing A
1 2	2.6	5.5 11	63 63	90	0.4	MEH_VCSDY_010A44_3 MEH_VCSDY_020A44_3	Drawing A
							4
3	3.9	16.4	50	195	0.5	MEH_VCSDY_030A44_3	4
ļ.	5.2	21.9	50	195	0.6	MEH_VCSDY_040A44_3	
) / _	6.6	33	50	195	0.7	MEH_VCSDY_050A44_3	
.5	9.8	50	63	195	0.9	MEH_VCSDY_075A44_3	-
0	13.1	55	70	195	1.0	MEH_VCSDY_100A44_3	
2.5	12.5	69	75	278	1.2	MEH_VCSDY_125A44_3	Drawing B
5	19.7	82	75	278	1.3	MEH_VCSDY_150A44_3	
20	26.2	110	90	278	2.1	MEH_VCSDY_200A44_3	Drawing C
25	32.8	137	90	278	2.2	MEH_VCSDY_250A44_3	-
0	39.4	164	90	278	2.3	MEH_VCSDY_300A44_3	
0	52.4	220	116	278	3.8	MEH_VCSDY_400A44_3	Drawing E
0	65.6	274	136	278	4.9	MEH_VCSDY_500A44_3	
lote: 4	10 & 50 kVAr on re	equest					
/arp	lusCan Heavy	y Duty capacitor:	s (HDu	ity)			
	1.3	5.5	63	90	0.5	MEH_VCHDY_010A44_3	Drawing A
)	2.6	11	50	195	0.6	MEH_VCHDY_020A44_3	Dramigri
}	3.9	16.4	50	195	0.6	MEH_VCHDY_030A44_3	-
, 	5.2	21.9	50	195	0.7	MEH_VCHDY_040A44_3	4
)	6.6	33	63	195	0.8	MEH_VCHDY_050A44_3	
.5	9.8	50	63	195	1	MEH_VCHDY_075A44_3	
0	13.1	55	75	203	1.1	MEH_VCHDY_100A44_3	Drawing B
2.5	12.5	69	90	203	1.5	MEH_VCHDY_125A44_3	Drawing C
2.5 5	12.5	82	90	212			Drawing C
0 20	26.2		116	212	1.6 2.4	MEH_VCHDY_150A44_3	Drouving
		110			2.4	MEH_VCHDY_200A44_3	Drawing D
25	32.8	137	116	212	2.5	MEH_VCHDY_250A44_3	4
30	39.4	164	136	212	3.1	MEH_VCHDY_300A44_3	Danular
10 50	52.4 65.6	220 274	136 136	278 278	3.4 4.6	MEH_VCHDY_400A44_3	Drawing E
	10 & 50 kvar on re	,	130	270	4.0	MEH_VCHDY_500A44_3	
/arp	lus Can Gas F	leavy Duty capa	citor ((GH Duty)		
; ;	6.6	33	63	195	0.9	MEH_VCGSF_050A44_3	Drawing A
.5	9.8	50	63	195	1	MEH_VCGSF_050A44_3	Diawing A
.5	13.1	55	75	203	1.1	MEH_VCGSF_075A44_3	Drawing B
2.5	12.5	69	90	203	1.1	MEH_VCGSF_100A44_3	Drawing C
2.5 5	12.5	82	90	212	1.5	MEH_VCGSF_125A44_3	
0		110		212			Drawing D
	26.2	137	116		2.4	MEH_VCGSF_200A44_3	Diawing D
0	220		116	212	2.5 3.1	MEH_VCGSF_250A44_3 MEH_VCGSF_300A44_3	1 7
0 5	32.8		10/	212	.5.1		1
0 5 0	39.4	164	136	212			Draude - E
0 5 0 0	39.4 52.4	164 220	136	278	3.4	MEH_VCGSF_400A44_3	Drawing E
0 5 0 0 0	39.4	164 220 274					Drawing E
0 5 0 0 0 Jote: 4	39.4 52.4 65.6 40 & 50 kVAr on re	164 220 274 equest	136	278	3.4	MEH_VCGSF_400A44_3	Drawing E
20 25 30 10 50 Note: 4	39.4 52.4 65.6 40 & 50 kVAr on re	164 220 274 equest 39 (MD-XL)	136 136	278 278	3.4 4.6	MEH_VCGSF_400A44_3 MEH_VCGSF_500A44_3	
0 5 0 0 Jote: 4 /arp	39.4 52.4 65.6 40 & 50 kVAr on re lusCan Energ 6.6	164 220 274 equest 33	136 136 75	278 278 203	3.4 4.6	MEH_VCGSF_400A44_3 MEH_VCGSF_500A44_3 MEH_VCENY_050A44_3	Drawing E Drawing B
25 30 40 50 Jote: 4 /arp	39.4 52.4 65.6 40 & 50 kVAr on re lusCan Energ 6.6 9.8	164 220 274 equest 33 50	136 136 75 90	278 278 203 212	3.4 4.6 1.2 1.4	MEH_VCGSF_400A44_3 MEH_VCGSF_500A44_3 MEH_VCENY_050A44_3 MEH_VCENY_050A44_3	Drawing B
25 30 40 30 30 30 30 40 30 30 40 5 5 0	39.4 52.4 65.6 40 & 50 kVAr on re lusCan Energ 6.6 9.8 13.1	164 220 274 equest 33 50 55	136 136 75 90 90	278 278 203 212 278	3.4 4.6 1.2 1.4 2.3	MEH_VCGSF_400A44_3 MEH_VCGSF_500A44_3 MEH_VCENY_050A44_3 MEH_VCENY_050A44_3 MEH_VCENY_075A44_3 MEH_VCENY_100A44_3	
25 30 40 50 Jote: 4 /arp	39.4 52.4 65.6 40 & 50 kVAr on re lusCan Energ 6.6 9.8	164 220 274 equest 33 50	136 136 75 90	278 278 203 212	3.4 4.6 1.2 1.4	MEH_VCGSF_400A44_3 MEH_VCGSF_500A44_3 MEH_VCENY_050A44_3 MEH_VCENY_050A44_3	Drawing B

Refer Drawings in page no. 31

VarplusBox Capacitor

Varplus Box capacitors deliver reliable performance in most of the fixed applications such as Fixed & Automatic PFC systems and in networks with frequently switched loads & harmonic disturbances.

Construction

The design is specially adapted for mechanical stability. The enclosure is designed to ensure reliable operation of the capacitors in hot and humid conditions, without any additional ventilation louvers.

Main Characteristics / High performance

- Heavy edge metallization / wave cut edge to ensure high inrush current capabilities
- Special resistivity and profile metallization for enhanced life

Safety

• It's unique safety feature PSD, electrically disconnects the capacitors safely at the end of their life.

Flexibility

- Easily mountable inside panels or in a stand- alone configuration
- Suitable for flexible bank configuration

Additional Features

- Pre coated Metal box
- Higher ratings up to 100kvar
- Easy repair and maintenance

Typical Applications

- Stand alone PFC equipment
- Fixed bank
- Direct connection to a machine, in hostile environment conditions

- Non-Linear loads up to 10%
- Over-current 1.5 ls
- Ambient temperature up to 55°C
- Switching frequency up to 5000 /year
- Voltage range 415 / 440 V (other voltage on request)
- kvar range: 1 to 100 (40, 50, 75 and 100 kvar on request)

Varplus Box Heavy Duty Capacitors (HDuty)

- Non-Linear loads up to 20%
- Over-current -1.8 ls
- Ambient temperature up to 55°C
- Switching frequency up to 7000 /year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 5 to 100 (40, 50, 75 and 100 kvar on request)

Varplus Box Energy Capacitors (MD-XL)

- Non-linear loads up to 25%
- Over-current 2.5 ls
- Ambient temperature up to 70°C
- Frequent switching operation up to 10000/year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 5 to 100 (40, 50, 75 and 100 kvar on request)

Varplus Box APP Super Heavy Duty Capacitors (SHDuty)

- Non-linear loads up to 20%
- Over-current 2.0 İs
- Ambient temperature up to 70°C
- Frequent switching operation up to 10000/year
- Voltage range 415 / 440 V (other voltages on request)
- kvar range: 5 to 100 (40, 50, 75 and 100 kvar on request)

Technical Details

	Standard Duty Capacitors (SDuty)	VarplusBox Heavy Duty Capacitors (HDuty)	Varplus Box Energy Capacitors (MD-XL)	Varplus Box APP Super Heavy Duty Capacitors (SHDuty)
Standards	13340-1993, IS 13341 -1992, IEC 60831-1/-2	IS 13340-1993, IS 13341 -1992, IEC 60831-1/-2	IS 13340-1993, IS 13341 -1992, IEC 60831-1/-2	IS 13585-1994, IEC 60834-1/-2
Rated Voltage	415 /440V (other voltag	e on request)		
Frequency	50 Hz			
Powerrange	From 1 to 100 kvar	From 5 to 100 kvar	From 5 to 100 kvar	From 5 to 100 kvar
Losses(Dielectrical)	< 0,2 watt/kvar			
Losses (Total)	< 0,5 watt/kvar			
Peak inrush current	Up to 150 x IN	Up to 250 x IN	Up to 400 x IN	Up to 350 x IN
Over voltage	1.1 Us continuous			
Over current	1.5 x ls	1.8 x ls	2.5 x l s	2.0 x ls
Mean life expectancy	Up to 100,000 Hours	Up to 130,000 Hours	Up to 160,000 Hours	Up to 140,000 Hours
Capacitance tolerance	-5%, +10%	•	•	•
Voltage test				
Between terminals	2.15x U _N (AC), 2 sec			
Between earth & terminals	< 660V, 3000V (AC) 10	sec & >660V, 6000V (AC	2), 10sec	
Dischargeresistors	Fitted: standard discharg			
Safety		sensitive disconnector for e	every phase + discharge d	evice
Protection	IP20 (IP54 on request)		svory pridso r disoridigo d	01100
Casing	Sheet steel enclosure			
Dielectric	Metallised Polypropylene film with Zn/Al alloy, flat metallization	Metallised Polypropylene film with Zn/Al alloy, special resistivity & profile, special edge (wave cut)	Double metallized paper + Polypropylene film	Aluminum foil + PP film
Impregnation	Non - PCB, Bio- degradable PUR resin	Non - PCB, Bio-degradableDry Resin	Non-PCB, oil	Non-PCB, oil
Environmental conditions				
Ambient temperature	-25°C / +55°C (Class D)		-25°C / +70°C (Class D)	-25°C / +55°C (Class D)
Humidity	95%			
Altitude	4000m above sea level			
Installation features				
Mounting	Indoor, vertical position			
Connection	Three phase (delta con	noction)		
Fixing and earthing Terminals	Mounting cleats	ned for large cable termina		

440V Capacitor ordering reference nos.

Rated KVAr	Rated Current (Amps)	Rated capacitance µF (x 3)	Dim W1	ension ¦ W2	(mm) D	Н	Net Weight (kg)	Ordering reference no.	Reference Drawing nos.
Varp	lusBox Stand	lard Duty Ca	ipacit	tors ((SDu	ty)			
1	1.3	7	115	95	55	117	0.55	MEH_VBSDY_010A44_3	Drawing 10
2	2.6	13	115	95	55	148	0.65	MEH_VBSDY_020A44_3	
3	3.9	20	144	125	55	121	0.75	MEH_VBSDY_030A44_3	
4	5.2	27	144	125	55	152	0.95	MEH_VBSDY_040A44_3	-
5 6	6.6 7.9	33 40	144 144	125 125	55 55	152 162	0.95 1.1	MEH_VBSDY_050A44_3 MEH_VBSDY_060A44_3	
7.5	10	50	263	243	97	260	3	MEH_VBSDY_000A44_3	Drawing 1
10	13	55	263	243	97	260	3.5	MEH_VBSDY_100A44_3	Drawing r
12.5	16	69	263	243	97	260	3.6	MEH_VBSDY_125A44_3	
15	20	82	263	243	97	355	4.7	MEH_VBSDY_150A44_3	
20	26	110	263	243	97	355	4.8	MEH_VBSDY_200A44_3	
25	33	137	263	243	97	355	5.1	MEH_VBSDY_250A44_3	
30	39	164	309	289	153	455	7.7	MEH_VBSDY_300A44_3	
40	52	219	309	289	153	455	7.8	MEH_VBSDY_400A44_3	
50	66	274	309	289	153	455	8	MEH_VBSDY_500A44_3	
75	98	411	435	280	270	455	21.3	MEH_VBSDY_750A44_3	Drawing 4
100	131	548	545	390	270	455	27	MEH_VBSDY_XOOA44_3	Drawing 5
Vorp			oltor), ,+,,/				
	lus Box Heav	<u> </u>			5,		0.05		Draci
5	6.6	33	263	243	97	260	0.95	MEH_VBHDY_050A44_3	Drawing 1
7.5 10	10 13	50 55	263	243 243	97 97	260 355	3	MEH_VBHDY_075A44_3	
12.5	13	69	263 263	243	97	355	3.5 3.6	MEH_VBHDY_100A44_3 MEH_VBHDY_125A44_3	
12.5	20	82	263	243	97	355	4.7	MEH_VBHDY_150A44_3	-
20	26	110	309	243	153	355	4.8	MEH_VBHDY_200A44_3	-
25	33	137	309	289	153	355	5.1	MEH_VBHDY_250A44_3	
30	39	164	309	289	224	497	7.7	MEH_VBHDY_300A44_3	Drawing 2
40	52	219	309	289	224	497	7.8	MEH_VBHDY_400A44_3	
50	66	274	309	289	224	497	8	MEH_VBHDY_500A44_3	
75	98		625	460	315	455	21.3	MEH_VBHDY_750A44_3	Drowing 4
		411						WILT_VDHDT_750A44_5	Drawing 4
100	131	548	795	630	315	455	21.3	MEH_VBHDY_XOOA44_3	Drawing 5
100	131	548	795	630	315				
100 Varp	131 Ius Box Energ	548 gy Capacitor	795 rs (MI	630 D-XL)	455	27	MEH_VBHDY_XOOA44_3	Drawing 5
100 Varp	131	548 gy Capacitor	795 rs (MI 263	630 D-XL 243)	455 260	27	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3	
100 Varp 5	131 Ius Box Energ 6.6	548 gy Capacitor 33	795 rs (MI	630 D-XL) 97	455	3.5	MEH_VBHDY_XOOA44_3	Drawing 5
100 Varp 5 7.5 10 12.5	131 Ius Box Energ 6.6 10 13 16	548 gy Capacitor 33 50 55 69	795 rs (Mi 263 263 263 263	630 D-XL 243 243 243 243) 97 97 97 97 97	455 260 355 355 355	27 3.5 4.7 5 5.4	MEH_VBHDY_X00A44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3	Drawing 5
100 Varp 5 7.5 10 12.5 15	131 Ius Box Energ 6.6 10 13 16 20	548 gy Capacitor 33 50 55 69 82	795 S (MI 263 263 263 263 309	630 D-XL 243 243 243 243 243 289) 97 97 97 97 97 153	455 260 355 355 355 355	27 3.5 4.7 5 5.4 8	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3	Drawing 5
100 5 7.5 10 12.5 15 20	131 Ius Box Energ 6.6 10 13 16 20 26	548 548 50 55 69 82 110	795 CS (M 263 263 263 263 309 309	630 D-XL 243 243 243 243 243 289 289) 97 97 97 97 153 153	260 355 355 355 355 355	27 3.5 4.7 5 5.4 8 8.7	MEH_VBHDY_X00A44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_150A44_3	Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25	131 Ius Box Energ 6.6 10 13 16 20 26 33	548 gy Capacitor 33 50 55 69 82 110 137	795 263 263 263 263 263 309 309 309	630 D-XL 243 243 243 243 289 289 289 289) 97 97 97 97 153 153 153	455 260 355 355 355 355 355 355 355	27 3.5 4.7 5 5.4 8 8.7 9.4	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_250A44_3	Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30	131 Ius Box Energ 6.6 10 13 16 20 26 33 39	548 33 50 55 69 82 110 137 164	795 263 263 263 263 263 309 309 309 309 309	630 D-XL 243 243 243 243 243 243 289 289 289 289 289) 97 97 97 97 153 153 153 224	455 260 355 355 355 355 355 355 355 355 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_250A44_3	Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52	548 33 50 55 69 82 110 137 164 219	795 (MI 263 263 263 263 309 309 309 309 309 309	630 D-XL 243 243 243 243 243 243 289 289 289 289 289 289 289) 97 97 97 97 153 153 153 224 224	455 260 355 355 355 355 355 355 355 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3	Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66	548 33 50 55 69 82 110 137 164 219 274	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 243 243 289 289 289 289 289 289 289) 97 97 97 97 153 153 153 153 224 224 224	455 260 355 355 355 355 355 355 355 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3	Drawing 5 Drawing 1 Drawing 2
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98	548 548 33 50 55 69 82 110 137 164 219 274 411	795 (M) 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 243 243 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315	455 260 355 355 355 355 355 355 355 497 497 497 455	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_500A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66	548 33 50 55 69 82 110 137 164 219 274	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 243 243 289 289 289 289 289 289 289) 97 97 97 97 153 153 153 153 224 224 224	455 260 355 355 355 355 355 355 355 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3	Drawing 5 Drawing 1 Drawing 2
100 5 7.5 10 12.5 15 20 25 30 40 50 75 100	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98	548 548 29 Capacitor 33 50 55 69 82 110 137 164 219 274 411 548	795 CS (M 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289) 97 97 97 153 153 153 224 224 224 224 315 315	455 260 355 355 355 355 355 355 497 497 497 497 455	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_500A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4
100 5 7.5 10 12.5 15 20 25 30 40 50 75 100	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131	548 548 29 Capacitor 33 50 55 69 82 110 137 164 219 274 411 548	795 CS (M 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289) 97 97 97 153 153 153 224 224 224 224 315 315	455 260 355 355 355 355 355 355 497 497 497 497 455	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_500A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50	795 (MI 263 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315	455 260 355 355 355 355 355 355 355 355 497 497 497 497 455 455	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 HDuty)	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55	795 (MI 263 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 224 224 224 224 224 224 224 224 224 22	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 455 455 455 165 185 210	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 SHDuty) 5.3 6.4 7.4	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69	795 (MI 263 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 224 224 224 224 224 224 224 224 224 22	455 260 355 355 355 355 355 355 355 355 497 497 497 497 497 497 455 455 455 165 185 210 230	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 SHDuty) 5.3 6.4 7.4 8.6	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_125A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_100A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 411 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 315 315	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 497 497 497 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 111 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 315 315	455 260 355 355 355 355 355 355 355 355 355 35	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_150A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26 33	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 137 164 219 274 411 548	795 (MI 263 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 315 315	455 260 355 355 355 355 355 355 355 355 355 35	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_150A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_400A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_X00A44_3 MEH_VBENY_100A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26 33 39	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 137 164 219 274 411 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XL 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 323 123 123 123 123 123 123 123 383	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 497 497 497 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_125A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26 33 39 52	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 137 164 219 274 411 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XI 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 323 123 123 123 123 123 123 123 123 383 383	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 497 497 497 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_125A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_300A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 10 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26 33 39 52 6.6 10 13 16 20 26 33 39 52 66	548 y Capacitor 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 137 164 219 274 411 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XI 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 315 315	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 497 497 497 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_125A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_300A44_3 MEH_VBAPP_400A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5 Drawing 11 Drawing 11 Drawing 12
100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 Varp 5 7.5 10 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 12.5 15 20 25 30 40 50 75 100 100 100 100 100 100 100 10	131 Ius Box Energ 6.6 10 13 16 20 26 33 39 52 66 98 131 Ius Box APP S 6.6 10 13 16 20 26 33 39 52	548 33 50 55 69 82 110 137 164 219 274 411 548 Super Heavy 33 50 55 69 82 110 137 164 219 274 411 548	795 (MI 263 263 263 263 309 309 309 309 309 309 309 30	630 D-XI 243 243 243 243 289 289 289 289 289 289 289 289 289 289	315 97 97 97 153 153 153 224 224 224 224 315 315 315 315 315 315 315 315 323 123 123 123 123 123 123 123 123 383 383	455 260 355 355 355 355 355 355 355 355 355 497 497 497 497 497 497 497 497 497 497	27 3.5 4.7 5 5.4 8 8.7 9.4 11.3 12.2 13 38 50 50 50 50 50 50 50 50 50 50	MEH_VBHDY_XOOA44_3 MEH_VBENY_050A44_3 MEH_VBENY_075A44_3 MEH_VBENY_100A44_3 MEH_VBENY_125A44_3 MEH_VBENY_125A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_200A44_3 MEH_VBENY_300A44_3 MEH_VBENY_400A44_3 MEH_VBENY_500A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_750A44_3 MEH_VBENY_X00A44_3 MEH_VBAPP_075A44_3 MEH_VBAPP_125A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_150A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_200A44_3 MEH_VBAPP_300A44_3	Drawing 5 Drawing 1 Drawing 2 Drawing 4 Drawing 5

Refer Drawings in page no. 32 and 33. Drawing 11 & 12 on request.

Harmonic Capacitors for Detuned Filter application

Reactors have to be associated to capacitor banks for Power Factor Correction in systems with significant non-linear loads generating harmonics.

Capacitors and reactors are configured in a series resonant circuit, tuned so that the series resonant frequency is below the lowest harmonic frequency present in the system. This configuration is called "Detuned Capacitor Bank", and the reactors referred as "Detuned Reactors".

The use of Detuned reactors prevents harmonic resonance problems, avoids the risk of overloading capacitors and leads to reduction in voltage harmonic distortion in the network.

The tuning frequency can be expressed by the relative impedance of the reactor (in %), or by the tuning order, or directly in Hz.

The most common values of relative impedance are 5.67%, 7% and 14% (14% is used with high level of 3rd harmonic voltages).

Tuning Factor P (%)	Tuning order (Fh/F1)	Tuning frequency @50Hz (Hz)
5.67	4.2	210
7	3.8	189
14	2.67	134

The selection of the tuning frequency of the reactor capacitor depends on multiple factors:

- Presence of zero-sequence harmonics (3, 9, ...)
- Need for reduction of the harmonic distortion level
- Optimization of the capacitor and reactor components
- Frequency of ripple control system if any*

*To prevent disturbances of the remote control installation, the tuning frequency has to be selected at a lower value than the ripple control frequency.

In the Detuned filter application the voltage across the capacitors is higher than the nominal system voltage.

And also the presence of series reactor will increase the voltage across the capacitor due to Ferranti effect. Therefore capacitors have been designed to withstand higher voltages.

The table provides the details of Capacitor voltage applicable for different tuning factors:

Tuning Factor P (%)	Bus Voltage	Minimum Capacitor Voltage
5.67	440	480
7	440	480
14	440	525

VarplusCan Harmonic Capacitors

Harmonic capacitor is specifically designed to carry wide spectrum of harmonic and fundamental currents without overloading

It is designed for higher voltage capacitor to allow increased voltage due to introduction of series reactor

The kvar of the capacitor is suitably designed to deliver the rated kvar of the filter at the bus voltage.

VarplusCan Harmonic Heavy Duty Capacitors

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 7000 /year

VarplusCan Harmonic Gas Heavy Duty Capacitors

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 7000 /year

Varplus Can Harmonic Energy Capacitors

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 10000 /year

Harmonic Capacitor ordering reference nos.

VarplusCan Harmonic Heavy Duty Capacitors (H Duty)

Net work Voltage	Detuning Factor (%)	Rated kvar @ 440V	Capacitor Dimension (mm)		Harmonic Capacitor ordering reference No.	Cap Qty.	Reference Drawing Nos.
			D	Н			
440V	5.67%	5	63	195	MEH VCHH1 050A44 3	1	Drawing A
		7.5	70	195	MEH_VCHH1_075A44_3	1	
		10	75	203	MEH_VCHH1_100A44_3	1	Drawing B
		12.5	90	212	MEH VCHH1 125A44 3	1	Drawing C
		15	90	212	MEH_VCHH1_150A44_3	1	5
	-	20	116	212	MEH_VCHH1_200A44_3	1	Drawing D
	25	136	212	MEH_VCHH1_250A44_3	1		
		50	136	212	MEH_VCHH1_250A44_3	2	
		75	136	212	MEH_VCHH1_250A44_3	3	
		100	136	212	MEH_VCHH1_250A44_3	4	
440V	7%	5	63	195	MEH_VCHH1_050A44_3	1	Drawing A
	Ī	7.5	70	195	MEH_VCHH1_075A44_3	1	
		10	75	203	MEH_VCHH1_100A44_3	1	Drawing B
		12.5	90	212	MEH_VCHGH1_125A44_3	1	Drawing C
		15	90	212	MEH_VCHH1_150A44_3	1	
		20	116	212	MEH_VCHH1_200A44_3	1	Drawing D
		25	136	212	MEH_VCHH1_250A44_3	1	-
		50	136	212	MEH_VCHH1_250A44_3	2	
		75	136	212	MEH_VCHH1_250A44_3	3	
		100	136	212	MEH_VCHH1_250A44_3	4	
440V	14%	5	63	195	MEH_VCHH2_050A44_3	1	Drawing A
		7.5	70	195	MEH_VCHH2_075A44_3	1	-
		10	90	212	MEH_VCHH2_100A44_3	1	Drawing C
	l I	12.5	90	212	MEH_VCHH2_125A44_3	1	
		15	116	212	MEH_VCHH2_150A44_3	1	Drawing D
		20	116	212	MEH_VCHH2_200A44_3	1	
		25	136	212	MEH_VCHH2_250A44_3	1	
		50	136	212	MEH_VCHH2_250A44_3	2	
		75	136	212	MEH_VCHH2_250A44_3	3	
		100	136	212	MEH VCHH2 250A44 3	4	

Refer Drawings in page no. 31

VarplusCan Harmonic Gas Heavy Duty Capacitors (GH Duty)

Net work Voltage	Detuning Factor (%)	Rated kvar @ 440V	Capaci	sion	Harmonic Capacitor ordering reference No.	Cap Qty.	Reference Drawing Nos.
	,		D	H	ļ		
440V	5.67%	5	63	195	MEH_VCGH1_050A44_3	1	Drawing A
		7.5	70	195	MEH_VCGH1_075A44_3	1	5
		10	75	203	MEH_VCGH1_100A44_3	1	Drawing B
		12.5	90	212	MEH_VCGH1_125A44_3	1	Drawing C
		15	90	212	MEH_VCGH1_150A44_3	1	-
	20	116	212	MEH_VCGH1_200A44_3	1	Drawing D	
	25	136	212	MEH_VCGH1_250A44_3	1		
		50	136	212	MEH_VCGH1_250A44_3	2	
		75	136	212	MEH_VCGH1_250A44_3	3	
		100	136	212	MEH_VCGH1_250A44_3	4	
440V	7%	5	63	195	MEH_VCGH1_050A44_3	1	Drawing A
		7.5	70	195	MEH_VCGH1_075A44_3	1	
		10	75	203	MEH_VCGH1_100A44_3	1	Drawing B
		12.5	90	212	MEH_VCGH1_125A44_3	1	Drawing C
		15	90	212	MEH_VCGH1_150A44_3	1	-
		20	116	212	MEH_VCGH1_200A44_3	1	Drawing D
		25	136	212	MEH_VCGH1_250A44_3	1	-
		50	136	212	MEH_VCGH1_250A44_3	2	
		75	136	212	MEH_VCGH1_250A44_3	3	
		100	136	212	MEH_VCGH1_250A44_3	4	
440V	14%	5	63	195	MEH_VCGH2_050A44_3	1	Drawing A
		7.5	70	195	MEH_VCGH2_075A44_3	1	Ū
		10	90	212	MEH_VCGH2_100A44_3	1	Drawing C
		12.5	90	212	MEH_VCGH2_125A44_3	1	0
		15	116	212	MEH_VCGH2_150A44_3	1	Drawing D
		20	116	212	MEH_VCGH2_200A44_3	1	č
		25	136	212	MEH_VCGH2_250A44_3	1	
		50	136	212	MEH_VCGH2_250A44_3	2	
		75	136	212	MEH_VCGH2_250A44_3	3	
		100	136	212	MEH VCGH2 250A44 3	4	

Varplus Can Harmonic Energy Capacitor (MD-XL)

Net work Voltage	Detuning Factor (%)	Rated kvar @ 440V	Capacitor Dimension D H		Harmonic Capacitor ordering reference No.	Reference Drawing Nos.
440V	5.67%	5	75 75	203 278	MEH_VCEH1_050A44_3 MEH_VCEH1_075A44_3	Drawing B
		10	90	278	MEH_VCEH1_075A44_3 MEH_VCEH1_100A44_3	Drawing C
		12.5	90	278	MEH_VCEH1_125A44_3	
		15	116	278	MEH_VCEH1_150A44_3	Drawing D
440V	7%	5	75	203	MEH_VCEH1_050A44_3	Drawing B
	í í	7.5	75	278	MEH_VCEH1_075A44_3	
		10	90	278	MEH_VCEH1_100A44_3	Drawing C
		12.5	90	278	MEH_VCEH1_125A44_3	
		15	116	278	MEH_VCEH1_150A44_3	Drawing D
440V	14%	5	75	278	MEH_VCEH2_050A44_3	Drawing C
		7.5	75	278	MEH_VCEH2_075A44_3	
		10	90	278	MEH_VCEH2_100A44_3	-
		12.5	116	278	MEH_VCEH2_125A44_3	Drawing D
		15	116	278	MEH_VCEH2_150A44_3	

Refer Drawings in page no. 31

Note: H1 = Rated voltage 480 H2 = Rated voltage 525

VarplusBox Harmonic Capacitors

VarplusBox Harmonic Heavy Duty Capacitors

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 7000 /year

Varplus Box Harmonic Energy Capacitors

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 10000 /year

VarplusBox Harmonic APP Super Heavy Duty Capacitor

For use with detuned reactor

- Non-Linear loads upto 30%
- Switching frequency up to 8000 /year

Harmonic Capacitor ordering reference nos.

Varplus Box Harmonic Heavy Duty Capacitors (HDuty)

Net work	Detuning	Rated kvar		citor Din			Harmonic Capacitor	Сар	Reference
Voltage	Factor (%)	@440V	W1	W2	¦ D	¦ H	ordering reference No.	Qty	Drawing Nos.
									1
440V	5.67%	5	263	243	97	260	MEH_VBHH1_050A44_3	1	Drawing 1
		7.5	263	243	97	355	MEH_VBHH1_075A44_3	1	
		10	263	243	97	355	MEH_VBHH1_100A44_3	1	
		12.5	263	243	97	355	MEH_VBHH1_125A44_3	1	1
		15	309	289	153	355	MEH_VBHH1_150A44_3	1	
		20	309	289	153	355	MEH_VBHH1_200A44_3	1	
		25	309	289	153	355	MEH_VBHH1_250A44_3	1	1
		50	309	289	153	355	MEH_VBHH1_250A44_3	2	
		75	309	289	153	355	MEH_VBHH1_250A44_3	3	
		100	309	289	153	355	MEH_VBHH1_250A44_3	4	
440V	7%	5	263	243	97	260	MEH_VBHH1_050A44_3	1	
		7.5	263	243	97	355	MEH_VBHH1_075A44_3	1	
		10	263	243	97	355	MEH_VBHH1_100A44_3	1	
		12.5	263	243	97	355	MEH_VBHH1_125A44_3	1	
		15	309	289	153	355	MEH_VBHH1_150A44_3	1	
		20	309	289	153	355	MEH_VBHH1_200A44_3	1	
		25	309	289	153	355	MEH_VBHH1_250A44_3	1	
		50	309	289	153	355	MEH_VBHH1_250A44_3	2	
		75	309	289	153	355	MEH_VBHH1_250A44_3	3	
		100	309	289	153	355	MEH_VBHH1_250A44_3	4	
440V	14%	5	263	243	97	260	MEH_VBHH2_050A44_3	1	
		7.5	263	243	97	355	MEH_VBHH2_075A44_3	1	
		10	263	243	97	355	MEH_VBHH2_100A44_3	1	}
		12.5	309	289	97	355	MEH_VBHH2_125A44_3	1	
		15	309	289	153	355	MEH_VBHH2_15OA44_3	1	
		20	309	289	153	355	MEH_VBHH2_200A44_3	1	
		25	309	289	153	355	MEH_VBHH2_250A44_3	1	
		50	309	289	224	497	MEH_VBHH2_250A44_3	2	
		75	309	289	153	355	MEH_VBHH2_250A44_3	3	
		100	309	289	153	355	MEH_VBHH2_250A44_3	4	

Net work	Detuning	Rated kvar	Capad	citor Din	nension	(mm)	Harmonic Capacitor	Cap	Reference
Voltage	Factor (%)	@440V	W1	W2	D	¦ H	ordering reference No.	Qty	Drawing Nos.
							ļ		
440V	5.67%	5	263	243	97	260	MEH_VBEH1_050A44_3	1	Drawing 1
		7.5	263	243	97	355	MEH_VBEH1_075A44_3	1	, , , , , , , , , , , , , , , , , , ,
		10	263	243	97	355	MEH_VBEH1_100A44_3	1	
		12.5	263	243	97	355	MEH_VBEH1_125A44_3	1	
		15	309	289	153	355	MEH_VBEH1_150A44_3	1	
		20	309	289	153	355	MEH_VBEH1_200A44_3	1	
	50 309 289 224 497 MEH_VBEH1_500A44_3 2 75 309 289 153 355 MEH_VBEH1_250A44_3 3	25	309	289	153	355	MEH_VBEH1_250A44_3	1	
			309	289	224				
		100	309	289	153	355	MEH_VBEH1_250A44_3	4	
440V	7%	5	263	243	97	260	MEH_VBEH1_050A44_3	1	
		7.5	263	243	97	355	MEH_VBEH1_075A44_3	1	
		10	263	243	97	355	MEH_VBEH1_100A44_3	1	
		12.5	263	243	97	355	MEH_VBEH1_125A44_3	1	
		15	309	289	153	355	MEH_VBEH1_150A44_3	1	
		20	309	289	153	355	MEH_VBEH1_200A44_3	1	
		25	309	289	153	355	MEH_VBEH1_250A44_3	1	
		50	309	289	224	497	MEH_VEHH1_500A44_3	2	
		75	309	289	153	355	MEH_VBEH1_250A44_3	3	
		100	309	289	153	355	MEH_VBEH1_250A44_3	4	
440V	14%	5	263	243	97	260	MEH_VBEH2_050A44_3	1	
		7.5	263	243	97	355	MEH_VBEH2_075A44_3	1	
		10	263	243	97	355	MEH_VBEH2_100A44_3	1	
		12.5	309	289	97	355	MEH_VBEH2_125A44_3	1	
		15	309	289	153	355	MEH_VBEH2_150A44_3	1	
		20	309	289	153	355	MEH_VBEH2_200A44_3	1	
		25	309	289	153	355	MEH_VBEH2_250A44_3	1	
		50	309	289	153	355	MEH_VBEH2_250A44_3	2	
		75	309	289	153	355	MEH_VBEH2_250A44_3	3	
		100	309	289	153	355	MEH_VBEH2_250A44_3	4	

Varplus Box Harmonic Energy Capacitors (MD-XL)

VarplusBox Harmonic APP Super Heavy Duty Capacitor (SHDuty)

Net work	Detuning	Rated kvar	Capacitor Dimension (mm)		Harmonic Capacitor	Cap	Reference		
Voltage	Factor (%)	@440V	W1	W2	D	¦Н	ordering reference No.	Qty	Drawing Nos.
440V	5.67%	5	383	370	123	160	MEH_VBAH1_050A44_3	1	Drawing 11
		7.5	383	370	123	170	MEH_VBAH1_075A44_3	1	
		10	383	370	123	190	MEH_VBAH1_100A44_3	1	
		12.5	383	370	123	205	MEH_VBAH1_125A44_3	1	
		15	383	370	123	220	MEH_VBAH1_150A44_3	1	
		20	383	370	123	255	MEH_VBAH1_200A44_3	1	
		25	383	370	123	285	MEH_VBAH1_250A44_3	1	
		50	383	370	123	285	MEH_VBAH1_250A44_3	2	
		75	383	370	123	285	MEH_VBAH1_250A44_3	3	
		100	383	370	123	285	MEH_VBAH1_250A44_3	4	
440V	7%	5	383	370	123	160	MEH_VBAH1_050A44_3	1	
		7.5	383	370	123	170	MEH_VBAH1_075A44_3	1	
		10	383	370	123	190	MEH_VBAH1_100A44_3	1	
		12.5	383	370	123	205	MEH_VBAH1_125A44_3	1	
		15	383	370	123	220	MEH_VBAH1_150A44_3	1	
		20	383	370	123	255	MEH_VBAH1_200A44_3	1	
		25	383	370	123	285	MEH_VBAH1_250A44_3	1	
		50	383	370	123	285	MEH_VBAH1_250A44_3	2	
		75	383	370	123	285	MEH_VBAH1_250A44_3	3	
		100	383	370	123	285	MEH_VBAH1_250A44_3	4	
440V	14%	5	383	370	123	170	MEH_VBAH2_050A44_3	1	
		7.5	383	370	123	180	MEH_VBAH2_075A44_3	1	
		10	383	370	123	210	MEH_VBAH2_100A44_3	1	
		12.5	383	370	123	230	MEH_VBAH2_125A44_3	1	
		15	383	370	123	255	MEH_VBAH2_150A44_3	1	
		20	383	370	123	295	MEH_VBAH2_200A44_3	1	
		25	383	370	123	335	MEH_VBAH2_250A44_3	1	
		50	383	370	123	335	MEH_VBAH2_250A44_3	2	
		75	383	370	123	335	MEH_VBAH2_250A44_3	3	
		100	383	370	123	335	MEH_VBAH2_250A44_3	4	

Drawing 11 on request

Detuned Reactors

The detuned reactors (DR) are designed to mitigate harmonics, improve power factor and avoid electrical resonance in low voltage electrical networks.

Technical Details

IEC 60076-6, IS 5553
Three phase, dry type
440V , 50Hz (Other voltages on request)
5.67% (210 Hz), 7% (189 Hz), 14%(134Hz)
F/H
<u>+</u> 3 %
$U_3 = 0.5\% \ x \ U_s$
$U_5 = 6.0\% \ x \ U_s$
U ₇ = 5.0% x Us
$U_{11} = 3.5\% \text{ x } U_{S}$
$U1_3 = 3.0\% x U_s$
I1 = 1.06 x In (rated cap current)
100%
$L \ge 0.95 \text{ x } L_N \text{ upto } 1.74 \text{ x } I_1$
1.1 kV
3 kV, 1 min
IPOO
Micro switch on terminal block 250 V, AC, 2 A (NC)
Copper
High grade CRNGO

Operating conditions

- Indoor application
- Storage temperature: 40°C, + 60°C
- Relative humidity in operation: 20-80%
- Saline mist withstand: 250 hours
- Operating temperature / Altitude:
 - ≤ 1000 m: Min = 0°C,Max=55°C, highest average over 1 year= 40°C, 24 hours = 50°C
 ≤ 2000m:
 - \leq 2000m. Min = 0°C, Max = 50°C,
 - highest average over 1 year= 35°C, 24hours = 45°C

Installation guidelines

- Forced ventilation required
- Vertical detuned reactor winding for better heat dissipation
- As the detuned reactor is with thermal protection, normally closed dry contact must be used to disconnect the step, in the event of overheating
- As per IEC 61642 :1997 ,clause no 3.3 guide lines

Typically, reactors cannot be added to existing capacitors to make a detuned filter as the installed capacitors may not be rated for the additional voltage and/or current caused by the added series reactor.

Normally, a power factor correction installation having series reactors shall not be mixed with equipment with out series reactor. Care should also be taken when a detuned filter is extended by equipment having a different tuning frequency. In both cases problems can occur due to unequal sharing of harmonic load and possible overloading of one filter or part of it.

Detuned Reactor ordering reference nos.

Tuning factor (%)	Rated kvar @ 440V	Induct ance (mH) x 3	I _N A	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reactor ordering reference no.
5.67%	5	7.4	18.4	203	145	110	86	142	7	MEH_VDR_050_05_A44
Fr =	7.5	4.94	12.5	203	145	110	86	142	7.8	MEH_VDR_075_05_A44
210 Hz	10	3.7	16.7	234	145	110	86	203	9	MEH_VDR_100_05_A44
	12.5	2.96	20.9	234	145	110	86	203	10	MEH_VDR_125_05_A44
	15	2.47	25.1	234	145	110	86	203	10.5	MEH_VDR_150_05_A44
	20	1.85	33.4	234	145	130	106	203	16	MEH_VDR_200_05_A44
	25	1.48	41.8	234	145	130	106	203	17	MEH_VDR_250_05_A44
	50	0.741	83.6	350	220	150	126	243	38	MEH_VDR_500_05_A44
	75	0.494	125.4	410	260	220	196	248	88	MEH_VDR_750_05_A44
	100	0.37	167.2	410	260	220	196	248	89	MEH_VDR_XOO_05_A44
7%	5	9.28	7.4	203	145	110	86	142	7	MEH_VDR_050_07_A44
Fr=	7.5	6.19	11.2	203	145	110	86	142	8	MEH_VDR_075_07_A44
189Hz	10	4.64	14.9	203	145	110	86	142	8.5	MEH_VDR_100_07_A44
10,112	12.5	3.7 1	18.6	234	145	110	86	203	9.8	MEH_VDR_125_07_A44
	15	3.09	22.3	234	145	116	92	203	12	MEH_VDR_150_07_A44
	20	2.32	29.7	234	145	135	111	183	17	MEH_VDR_200_07_A44
	25	1.86	37.2	234	145	135	111	183	18	MEH_VDR_250_07_A44
	50	0.928	74.4	234	145	180	156	203	11	MEH_VDR_500_07_A44
	75	0.618	111.5	350	220	175	151	222	46	MEH_VDR_750_07_A44
	100	0.464	148.7	350	220	175	151	222	51	MEH_VDR_XOO_07_A44
14%	5	20.6	7	234	145	116	92	203	11	MEH_VDR_050_14_A44
Fr=	7.5	13.38	10.5	234	145	116	92	203	12	MEH_VDR_075_14_A44
134Hz	10	10.03	14	234	145	116	92	203	14	MEH_VDR_100_14_A44
	12.5	8.03	17.5	234	145	120	96	203	14.5	MEH_VDR_125_14_A44
	15	6.69	21	234	145	120	96	203	14.5	MEH_VDR_150_14_A44
	20	5.02	28	234	145	180	156	203	31	MEH_VDR_200_14_A44
	25	4.01	35	234	145	180	156	203	32	MEH_VDR_250_14_A44
	50	2.01	70.1	350	220	140	116	243	38	MEH_VDR_500_14_A44
	75	1.34	105.1	350	220	212	188	243	70	MEH_VDR_750_14_A44
	100	1	140.1	350	220	212	188	243	77	MEH_VDR_XOO_14_A44

Note:

Refer drawing in page no. 33

Other voltage Detuned reactor on request :625, 690 & 800V,

Thyristor switch

When highly fluctuating loads present in the system such as lifts, crushers, welding, rolling mills, etc., Power Factor Correction requires a frequent and fast switching of capacitor banks.

With conventional switching devices, such as contactors lead to repetitive surge-current and over-voltage every time the capacitor bank is switched on. Frequent switching wouldn't allow enough time for the capacitor to discharge, which would create additional and unacceptable stress.

Thyristor modules are proposed for switching capacitors without transient inrush currents, normally associated with the electro mechanical contactor switching. An unlimited number of switchings are made possible, without applying significant stress to the capacitors.

Technical Details

Standards	IEC60947-4-3
Rated voltage	3 phase 440V AC 50 Hz
Capacitor ratings)	5 ,10 ,12.5,15 ,20, 25,30,50,60 kVAr (Other ratings available on request)
Control supply	240 V <u>+</u> 10% at 50 Hz, 7 VA (Other voltages available on request)
Command input voltage	Separate terminals provided for 10- 30V DC or 240 V AC or potential free contact. (Only one command signal should be applied at a time)

Features

- There are six LED indications and one control push button, provided in the front facia of the module, to enable the user to observe the operating conditions of the switch and to reset /restart the switch after a fault condition is cleared
- Cooling fan runs only when the command signal is made available to the switch
- Fault and tripping indications for over current and over temperature
- Optional provision has been made to switch on a contactor to bypass the Thyristor switch, once the switching cycle is complete. This provision is made to avoid power losses whenever the switch is on
- Six terminals provided for through power wiring for convenience of panel-builders
- Horizontal or vertical mounting is possible
- Supply and Capacitor connections may be connected to either end.

Ordering reference nos.

Rated	Rated		nsion (mm		Net Weight	Thyristor switch ordering	Reference
kVAr	Current (A)	W	H	D	(kg)	reference no.	Drawing Nos.
5	6.6	145	265	228	6.1	MEH_VTS_050_440_3	Drawing in
7.5	10	145	265	228	6.1	MEH_VTS_075_440_3	Page # 33
10	13	145	265	228	6.1	MEH_VTS_100_440_3	
12.5	16	145	265	228	6.1	MEH_VTS_125_440_3	
15	20	145	265	228	6.1	MEH_VTS_150_440_3	
20	26	145	265	228	6.5	MEH_VTS_200_440_3	
25	33	145	265	228	6.5	MEH_VTS_250_440_3	
50	66	145	265	228	6.5	MEH_VTS_500_440_3	
60	79	145	265	228	6.5	MEH_VTS_600_440_3	J

Contactors

Special contactors LC1 D•K are designed for switching 3-phase, single or multiple-step capacitor banks. They conform to standards IEC 60070 and 60831, NFC 54-100, VDE 0560, UL and CSA.

These contactors are fitted with a block of early make poles and damping resistors, limiting the value of the current on closing to 60 IN max. This current limitation increases the life of all the components of the installation, in particular that of the fuses and capacitors.

Ordering Reference Nos.

Voltage	kVAr	Contactor Ordering reference no.
440V	12.5	LC1DFK11**
50 Hz	16.7	LC1DGK11**
	20	LC1DLK11**
	25	LC1DMK11**C
	33.3	LC1DPK12**C
	40	LC1DTK12**C
<	60	LC1DWK12**C

*.Other voltages are available on request 400, 660, 690V contactor ** COIL Voltage code

Voltage	110	220	415
LC1-DFK DMK50/60HZ	F7	M7	N7
LC1-DPK DWK 50HZ	F5	M5	N5

Power Factor Controller

Varlogic Series

The Varlogic controllers permanently monitor the reactive power of the installation and control the connection and disconnection of capacitor steps in order to obtain the targeted power factor

NR 6/12

RT6/8/12

Features

- Analyses and provides information on network characteristics
- Controls the reactive power required to obtain the target power factor.
- Monitors and provides information on equipment status.
- Communicates on the Modbus network (Varlogic NRC12)

General characteristics

Output relays:

ÁC: 5A / 120V, 2A / 250V, 1A / 400V DC: 0.3A / 110V, 0.6A / 60V, 2A / 24V

Protection Index Front panel: IP41 Rear: IP20

Measuring current: 0 ... 5A

NRC 12

- Potential free external contact available for visual or audio alarm.
- 4 Quadrant Operation for Generator Application
- Dual Power Factor Contact for EB-DG application
- Connectivity of Current Transformer from 25A to 6000A rating.

NR 6/12

- Phase-Phase and Phase –Neutral connectivity possible
- Separate Fan relay contact

RT6/8/12

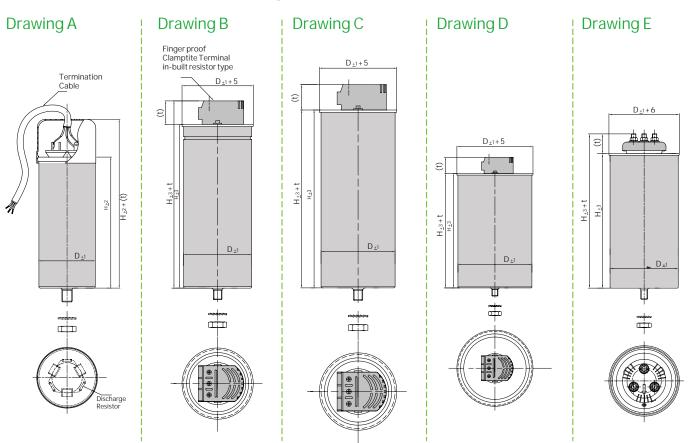
- 4 Digit 7 segment Display
- Connectivity of Current Transformer upto 10000A rating
- Reconnecting delay time from 10 1800 secs.

Technical Characteristics

Features	RT	NR	NRC	
Standards	IEC 61326-IEC 6100 Safety: EN61010-1			
Number of steps	6 / 8 / 12	6 / 12	12	
Supply voltage		88 130	88 130	
(VAC)	185 265	185 265	185 265	
50/60Hz	320 460	320 460	320 460	
Display				
 4 digit 7 segment LEDs 	•			
 65 x 21 mm backlighted screen 		•		
 55 x 28 mm backlighted screen 			•	
Dimensions	144 x 144 x 67	144 x 144 x 70	144 x 144 x 80	
Flush panel mounting	•	•	۵	
35 mm DIN rail mounting (EN 50022)		•	٠	
Operating temperature	0°C – 55°C	0°C – 60°C	0°C – 60°C	
Alarm contact			٥	
Internal temperature probe			۵	
Separate fan relay contact		•	٠	
Alarmhistory		5 last alarms	5 last alarms	
Type of connection:				
 phase-to-neutral 		•	٠	
 phase-to-phase 	•	•	•	
Current input:				
• CT 10000/5 A	•			
• CT 25/5A 6000/5A		•	•	
• CT 25/1A 6000/1A			•	
Target cos setting:				
• 0.85 ind 1	•			
• 0.85 ind0.9 cap.		٠	•	
Possibility of a dual cos target			٠	
Accuracy	+ 2%	+ 5%	+ 2%	
Response delay time:				
Reconnection delay time:				
• 101800 s	•			
• 10 600 s		•		
• 10 900 s			٠	

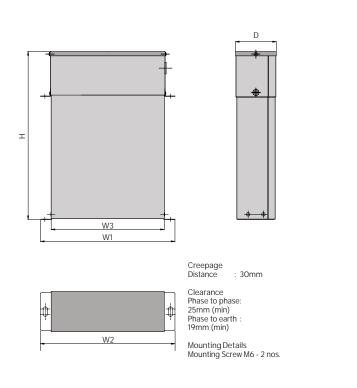
Ordering Reference Nos.

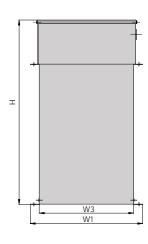
Туре	No. of Stages	Ordering Reference no.
NR6	6	52448
NR12	12	52449
NRC12	12	52450
RT6	6	51207
RT8	8	on request
RT12	12	on request

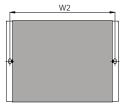

Reference Number Structure

Capacitors Harmonic Capacitors $\mathsf{MEH}_{-} \underbrace{\mathsf{VBSDY}}_{1} \underbrace{\mathsf{22}}_{2} \underbrace{\mathsf{125A}}_{4} \underbrace{\mathsf{44}}_{5} \underbrace{\mathsf{3}}_{6} \underbrace{\mathsf{44}}_{7} \underbrace{\mathsf{3}}_{7}$ 1. Construction 2. Range 3. Harmonic Duty Range HH1 Harmonic HD B= Box SDY = Standard Duty 5.67 or 7%, 480V C= Can HDY = Heavy Duty GH1 Harmonic GH 5.67 or 7%, 480V EH1 Harmonic Energy GSF = Gas Heavy Duty 5.67 or 7%, 480V ENY = Energy APP = Super Heavy Duty GH2 Harmonic GH 14%, 525V HH2 Harmonic HD 14%, 525V EH2 Harmonic Energy 14%, 525V 5.67 or 7%, 480V AH1 Harmonic APP AH2 Harmonic APP 14%, 525V 4. kvar range 5. Frequency 6. Rated Voltage 7. Network Voltage 8. Number of phases A = 50Hz41 = 415 V 41 = 415V 1 = single phaseExample: 125 = 12.5 kvar B = 60Hz44 = 440 V 44 = 440V3 = three-phase X00 = 100 kvar **Detuned reactors** MEH_VDR_250_05_A44 2 3 4 1 1. kvar 2. Tunina 3. Frequency 4. Voltage $44 = \breve{4}40V$ Example: 05 = 5.67%A = 50Hz07 = 7% 25 = 25 kvar B = 60Hz

Mechanical Drawings

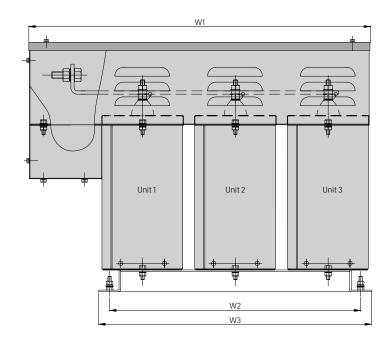

14 = 14%

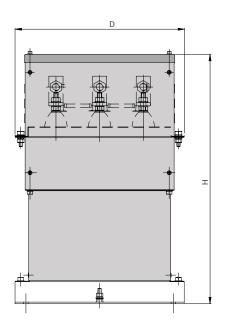

X00= 100 kvar



Drawing 1

Drawing 2

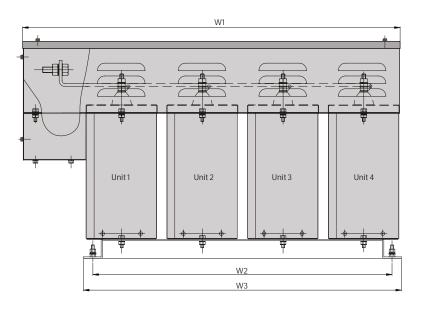



Creepage Distance : 30mm

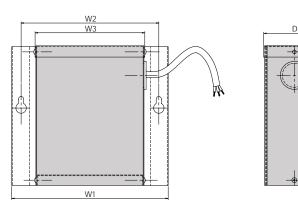
Clearance Phase to phase: 25mm (min) Phase to earth : 19mm (min)

Mounting Details Mounting Screw M6 - 2 nos.

Drawing 4

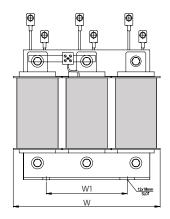

Creepage Distance : 30mm

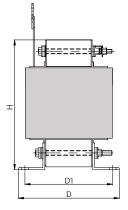
Clearance Phase to phase: Phase to earth :

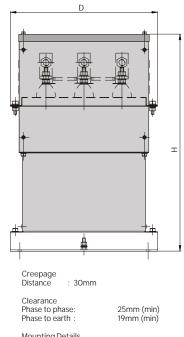

25mm (min) 19mm (min)

Mounting Details Mounting Screw M6 - 4 nos.

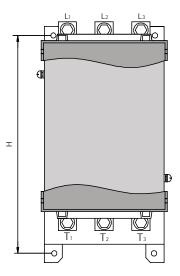
Drawing 5

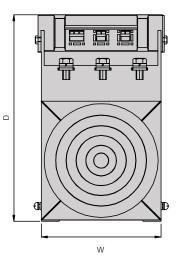



Drawing 10



Detuned Reactor





Mounting Details Mounting Screw M6 - 4 nos.

Thyristor switch Drawing

Global specialist in Energy Management

Visit us at: www.schneider-electric.co.in

For queries contact us at: Toll Free: 1800 111 341 (BSNL/MTNL) 1800 103 00 11 (Airtel) Phone: +91 11 4168 2434/35

For more information visit our website at: www.schneider-electric.co.in Schneider Electric India Pvt. Ltd. (A 100% subsidiary of Schneider Electric Industries SAS) Corporate office: A-29, Mohan Co-operative Industrial Estate, New Delhi-110 044. Tel: 011-3940 4000. Fax: 4167 8010/11 Customer Care Centre: Toll Free: 1800 111 341 (BSNL/MTNL). 1800 1030 011 (Airtel) Phone: +91 11 4168 2434/35, email: in-care@in.schneider-electric.com, website: www.schneider-electric.co.in